• Quasilinear Elliptic Equations with Degenerations and Singularities (De Gruyter Series in Nonlinear Analysis and Applications)

    The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Editor-in-ChiefJürgen Appell, Würzburg, Germany Honorary and Advisory EditorsCatherine Bandle, Basel, SwitzerlandAlain Bensoussan, Richardson, Texas, USAAvner Friedman, Columbus, Ohio, USAUmberto Mosco, Worcester, Massachusetts, USALouis Nirenberg, New York, USAAlfonso Vignoli, Rome, Italy Editorial BoardManuel del Pino, Bath, UK, and Santiago, ChileMikio Kato, Nagano, JapanWojciech Kryszewski, Toruń, PolandSimeon Reich, Haifa, Israel Please submit book proposals to Jürgen Appell. Titles in planning include Eduardo V. Teixeira, Free Boundary Problems: A Primer (2018)Lucio Damascelli and Filomena Pacella, Morse Index of Solution...

    • ASIN: B07G4P59HJ

  • Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Translations of Mathematical Monographs)

    This book is essentially a new edition, revised and augmented by results of the last decade, of the work of the same title published in 1968 by ``Nauka.'' It is devoted to mathematical questions of gas dynamics. Topics covered include Foundations of the Theory of Systems of Quasilinear Equations of Hyperbolic Type in Two Independent Variables; Classical and Generalized Solutions of One-Dimensional Gas Dynamics; Difference Methods for Solving the Equations of Gas Dynamics; and Generalized Solutions of Systems of Quasilinear Equations of Hyperbolic Type.

    • ASIN: 0821845098

  • Blow-Up in Quasilinear Parabolic Equations (De Gruyter Expositions in Mathematics)

    The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yakov G. Berkovich and Z. Janko, Groups of Prime Power Order, Volume 6 (2018)Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mar...

    • ASIN: B07B1TL1ZM

  • Linear and Quasi-linear Equations of Parabolic Type (Translations of Mathematical Monographs)

    In this volume boundary value problems are studied from two points of view; solvability, unique or otherwise, and the effect of various smoothness properties of the given functions on the smoothness of the solutions. There are seven chapters contained in this volume. Chapter One gives a statement of the new results and an historical sketch. Chapter Two introduces the various function spaces typical of modern Russian-style functional anaylsis. Chapters Three and Four deal with linear equations. Chapter Six concerns itself with quasilinear equations, and Chapter Seven with systems of equations. These last four chapters can be read independently of one another.

    • ASIN: 0821815733

  • First-Order Differential Equations: Volume 2, Theory and Application of Hyperbolic Systems of Quasilinear Equations

    Second volume of a 2-volume set examines physical systems that can usefully be modeled by equations of the first order. The book begins with a consideration of pairs of quasilinear hyperbolic equations of the first order and goes on to explore multicomponent chromatography, complications of counter-current moving-bed adsorbers, more. Exercises. 1989 edition. 198 black-and-white illustrations. Author and subject indices.

    • ASIN: 0486419940
    • UPC: 800759419944

  • Local and Global Aspects of Quasilinear Degenerate Elliptic Equations:Quasilinear Elliptic Singular Problems

    This book is devoted to the study of elliptic second-order degenerate quasilinear equations, the model of which is the p-Laplacian, with or without dominant lower order reaction term. Emphasis is put on three aspects: The existence of separable singular solutions enables the description of isolated singularities of general solutions. The construction of singular solutions is delicate and cannot be done without the understanding of the spherical p-harmonic eigenvalue problem.When the equations are considered on a Riemannian manifold, existence or non-existence of solutions depends on geometric assumptions such as the curvature. A priori estimates and Liouville type problems are analyzed.When the equations are considered with a forcing term in the class of measures, their study is strongly linked to the properties of a class of potentials appearing in harmonic analysis such as the Riesz, the Bessel or the Wolff potentials and to their associated capacities. Necessary and sufficient conditions for existence of solutions link the continuity of the measure with respect to some appropriate capacity.

    • ASIN: B073W9B4CT

  • Moving Interfaces and Quasilinear Parabolic Evolution Equations (Monographs in Mathematics)

    In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis.The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.

    • ASIN: 3319801961

  • Shock Formation in Small-data Solutions to 3d Quasilinear Wave Equations (Mathematical Surveys and Monographs)

    In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he provides a sharp description of the blow-up. These results yield a sharp converse of the fundamental result of Christodoulou and Klainerman, who showed that small-datasolutions are global when the null condition is satisfied. Readers who master the material will have acquired too...

    • ASIN: 1470428571